Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 8 de 8
Фильтр
1.
Infect Drug Resist ; 16: 3019-3028, 2023.
Статья в английский | MEDLINE | ID: covidwho-2323209

Реферат

Purpose: To evaluate the role of C-reactive protein (CRP) in predicting severe COVID-19 patients. Methods: A prospective observational cohort study was conducted from July 15 to October 28, 2020, at Kuyha COVID-19 isolation and treatment center hospital, Mekelle City, Northern Ethiopia. A total of 670 blood samples were collected serially. SARS-CoV-2 infection was confirmed by RT-PCR from nasopharyngeal swabs and CRP concentration was determined using Cobas Integra 400 Plus (Roche). Data were analyzed using STATA version 14. P-value <0.05 was considered statistically significant. Results: Overall, COVID-19 patients had significantly elevated CRP at baseline when compared to PCR-negative controls [median 11.1 (IQR: 2.0-127.8) mg/L vs 0.9 (IQR: 0.5-1.9) mg/L; p=0.0004)]. Those with severe COVID-19 clinical presentation had significantly higher median CRP levels compared to those with non-severe cases [166.1 (IQR: 48.6-332.5) mg/L vs 2.4 (IQR: 1.2-7.6) mg/L; p<0.00001)]. Moreover, COVID-19 patients exhibited higher median CRP levels at baseline [58 (IQR: 2.0-127.8) mg/L] that decreased significantly to 2.4 (IQR: 1.4-3.9) mg/L after 40 days after symptom onset (p<0.0001). Performance of CRP levels determined using ROC analysis distinguished severe from non-severe COVID-19 patients, with an AUC value of 0.83 (95% CI: 0.73-0.91; p=0.001; 77.4% sensitivity and 89.4% specificity). In multivariable analysis, CRP levels above 30 mg/L were significantly associated with an increased risk of developing severe COVID-19 for those who have higher ages and comorbidities (ARR 3.99, 95% CI: 1.35-11.82; p=0.013). Conclusion: CRP was found to be an independent determinant factor for severe COVID-19 patients. Therefore, CRP levels in COVID-19 patients in African settings may provide a simple, prompt, and inexpensive assessment of the severity status at baseline and monitoring of treatment outcomes.

2.
PLoS One ; 17(3): e0263627, 2022.
Статья в английский | MEDLINE | ID: covidwho-1759943

Реферат

BACKGROUND: Serological testing for SARS-CoV-2 plays an important role for epidemiological studies, in aiding the diagnosis of COVID-19, and assess vaccine responses. Little is known on dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. METHODS: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune-assays (LFIAs), and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. RESULTS: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increases in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly to 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested, within a median time of 11 (IQR: 9-15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6-11) vs. 15 (IQR: 13-21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibody at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. CONCLUSIONS: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of seroassays before implementation. Factors associated with failure to seroconvert needs further research.


Тема - темы
Antibody Formation , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19 Serological Testing/methods , Ethiopia/epidemiology , Female , Humans , Immunoassay , Longitudinal Studies , Male , Middle Aged , Patient Acuity , Prospective Studies , Seroepidemiologic Studies
3.
PLoS One ; 17(1): e0262178, 2022.
Статья в английский | MEDLINE | ID: covidwho-1637832

Реферат

BACKGROUND: COVID-19 is an ongoing public health pandemic regardless of the countless efforts made by various actors. Quality diagnostic tests are important for early detection and control. Notably, several commercially available one step RT-PCR based assays have been recommended by the WHO. Yet, their analytic and diagnostic performances have not been well documented in resource-limited settings. Hence, this study aimed to evaluate the diagnostic sensitivities and specificities of three commercially available one step reverse transcriptase-polymerase chain reaction (RT-PCR) assays in Ethiopia in clinical setting. METHODS: A cross-sectional study was conducted from April to June, 2021 on 279 respiratory swabs originating from community surveillance, contact cases and suspect cases. RNA was extracted using manual extraction method. Master-mix preparation, amplification and result interpretation was done as per the respective manufacturer. Agreements between RT-PCRs were analyzed using kappa values. Bayesian latent class models (BLCM) were fitted to obtain reliable estimates of diagnostic sensitivities, specificities of the three assays and prevalence in the absence of a true gold standard. RESULTS: Among the 279 respiratory samples, 50(18%), 59(21.2%), and 69(24.7%) were tested positive by TIB, Da An, and BGI assays, respectively. Moderate to substantial level of agreement was reported among the three assays with kappa value between 0 .55 and 0.72. Based on the BLCM relatively high specificities (95% CI) of 0.991(0.973-1.000), 0.961(0.930-0.991) and 0.916(0.875-0.952) and considerably lower sensitivities with 0.813(0.658-0.938), 0.836(0.712-0.940) and 0.810(0.687-0.920) for TIB MOLBIOL, Da An and BGI respectively were found. CONCLUSIONS: While all the three RT-PCR assays displayed comparable sensitivities, the specificities of TIB MOLBIOL and Da An were considerably higher than BGI. These results help adjust the apparent prevalence determined by the three RT-PCRs and thus support public health decisions in resource limited settings and consider alternatives as per their prioritization matrix.


Тема - темы
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Diagnostic Tests, Routine/methods , Pandemics/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , COVID-19/virology , Child , Cross-Sectional Studies , Ethiopia/epidemiology , False Positive Reactions , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sensitivity and Specificity , Young Adult
4.
BMC Infect Dis ; 21(1): 956, 2021 Sep 16.
Статья в английский | MEDLINE | ID: covidwho-1477290

Реферат

BACKGROUND: The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) and became pandemic after emerging in Wuhan, China, in December 2019. Several studies have been conducted to understand the key features of COVID-19 and its public health impact. However, the prognostic factors of COVID-19 are not well studied in the African setting. In this study, we aim to determine the epidemiological and clinical features of COVID-19 cases, immunological and virological courses, interaction with nutritional status, and response to treatment for COVID-19 patients in Ethiopia. METHODS: A multi-center cohort study design will be performed. Patients with confirmed COVID-19 infection admitted to selected treatment centers will be enrolled irrespective of their symptoms and followed-up for 12 months. Baseline epidemiological, clinical, laboratory and imaging data will be collected from treatment records, interviews, physical measurements, and biological samples. Follow-up data collection involves treatment and prognostic outcomes to be measured using different biomarkers and clinical parameters. Data collection will be done electronically using the Open Data Kit (ODK) software package and then exported to STATA/SPSS for analysis. Both descriptive and multivariable analyses will be performed to assess the independent determinants of the treatment outcome and prognosis to generate relevant information for informed prevention and case management. The primary outcomes of this study are death/survival and viral shedding. Secondary outcomes include epidemiological characteristics, clinical features, genetic frequency shifts (genotypic variations), and nutritional status. DISCUSSION: This is the first large prospective cohort study of patients in hospitals with COVID-19 in Ethiopia. The results will enable us to better understand the epidemiology of SARS-CoV-2 in Africa. This study will also provide useful information for effective public health measures and future pandemic preparedness and in response to outbreaks. It will also support policymakers in managing the epidemic based on scientific evidence. TRIAL REGISTRATION: The Protocol prospectively registered in ClinicalTrials.gov (NCT04584424) on 30 October, 2020.


Тема - темы
COVID-19 , Cohort Studies , Ethiopia/epidemiology , Humans , Multicenter Studies as Topic , Prognosis , Prospective Studies , SARS-CoV-2 , Treatment Outcome
5.
EClinicalMedicine ; 35: 100880, 2021 May.
Статья в английский | MEDLINE | ID: covidwho-1385452

Реферат

BACKGROUND: The spread of SARS-CoV-2 in Sub-Saharan Africa is poorly understood and to date has generally been characterised by a lower number of declared cases and deaths as compared to other regions of the world. Paucity of reliable information, with insights largely derived from limited RT-PCR testing in high-risk and urban populations, has been one of the biggest barriers to understanding the course of the pandemic and informed policy-making. Here we estimate seroprevalence of anti-SARS-CoV-2 antibodies in Ethiopia during the first wave of the pandemic. METHODS: We undertook a population-based household seroprevalence serosurvey based on 1856 participants in Ethiopia, in the capital city Addis Ababa, and in Jimma, a middle-sized town in the Oromia region, and its rural surroundings (districts of Seka and Mana), between 22 July and 02 September 2020. We tested one random participant per household for anti-SARS-CoV-2 antibodies using a high specificity rapid diagnostic tests (RDTs) and evaluated population seroprevalence using a Bayesian logistic regression model taking into account test performance as well as age and sex of the participants. FINDINGS: In total, 2304 random households were visited, with 1856 individuals consenting to participate. This produced a sample of 956 participants in Addis Ababa and 900 participants in Jimma. IgG prevalence was estimated at 1.9% (95% CI 0.4-3.7%), and combined IgM/IgG prevalence at 3.5% (95% CI 1.7-5.4%) for Addis Ababa in early August 2020, with higher prevalence in central sub-cities. Prevalence in Jimma town was lower at 0.5% (95% CI 0-1.8%) for IgG and 1.6% (95%CI 0-4.1%) for IgM/IgG, while in rural Jimma IgG prevalence was 0.2% and IgM/IgG 0.4% in early September. INTERPRETATION: More than four months after the first cases were detected in Ethiopia, Addis Ababa displayed a prevalence under 5% and likely as low as 2%, while rural Jimma displayed a prevalence of 0.2%. A 2% seroprevalence figure for the capital translated to a number of cases at least five times larger than those reported for the country as a whole. At the same time, it contrasts with significantly higher seroprevalence figures in large cities in Europe and America only two to three months after the first cases. This population-based seroepidemiological study thus provides evidence of a slower spread of SARS-CoV-2 in the Ethiopian population during the first wave of the pandemic and does not appear to support the notion that lower case numbers were simply a reflection of limited testing and surveillance. FUNDING: Schmidt Family Foundation, Joachim Hertz Foundation, Nespresso, Peet's and Smuckers.

6.
EClinicalMedicine ; 39: 101054, 2021 Sep.
Статья в английский | MEDLINE | ID: covidwho-1330780

Реферат

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a spectrum of clinical presentations. Evidence from Africa indicates that significantly less COVID-19 patients suffer from serious symptoms than in the industrialized world. We and others previously postulated a partial explanation for this phenomenon, being a different, more activated immune system due to parasite infections. Here, we aimed to test this hypothesis by investigating a potential correlation of co-infection with parasites with COVID-19 severity in an endemic area in Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. Ordinal logistic regression models were used to estimate the association between parasite infection, and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Findings: 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37.8%) had intestinal parasitic infection. Only 27/255 (10.6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51.8%) non-severe COVID-19 patients were parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (aOR) of 0.23 (95% CI 0.17-0.30; p<0.0001) for all parasites, aOR 0.37 ([95% CI 0.26-0.51]; p<0.0001) for protozoa, and aOR 0.26 ([95% CI 0.19-0.35]; p<0.0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolepis nana, Schistosoma mansoni, and Trichuris trichiura implied lower probability of developing severe COVID-19. There were 11 deaths (1.5%), and all were among patients without parasites (p = 0.009). Interpretation: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19. Funding: European and Developing Countries Clinical Trials Partnership (EDCTP) - European Union, and Joep Lange Institute (JLI), The Netherlands. Trial registration: Clinicaltrials.gov: NCT04473365.

8.
Glob Health Action ; 13(1): 1841963, 2020 12 31.
Статья в английский | MEDLINE | ID: covidwho-927412

Реферат

The Coronavirus pandemic is recording unprecedented deaths worldwide. The temporal distribution and burden of the disease varies from setting to setting based on economic status, demography and geographic location. A rapid increase in the number of COVID-19 cases is being reported in Africa as of June 2020. Ethiopia reported the first COVID-19 case on 13 March 2020. Limited molecular laboratory capacity in resource constrained settings is a challenge in the diagnosis of the ever-increasing cases and the overall management of the disease. In this article, the Ethiopian Public Health Institute (EPHI) shares the experience, challenges and prospects in the rapid establishment of one of its COVID-19 testing laboratories from available resources. The first steps in establishing the COVID-19 molecular testing laboratory were i) identifying a suitable space ii) renovating it and iii) mobilizing materials including consumables, mainly from the Malaria and Neglected Tropical Diseases (NTDs) research team at the EPHI. A chain of experimental design was set up with distinct laboratories to standardize the extraction of samples, preparation of the master mix and detection. At the commencement of sample reception and testing, laboratory contamination was among the primary challenges faced. The source of the contamination was identified in the master mix room and resolved. In summary, the established COVID-19 testing lab has tested more than 40,000 samples (August 2020) and is the preferred setting for research and training. The lessons learned may benefit the further establishment of emergency testing laboratories for COVID-19 and/or other epidemic/pandemic diseases in resource-limited settings.


Тема - темы
COVID-19 Testing , COVID-19/diagnosis , COVID-19/epidemiology , Ethiopia/epidemiology , Humans , Pandemics , SARS-CoV-2
Критерии поиска